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Abstract

Vibration isolation control system design for a microgravity experiment mount is

considered. The controller design based on dynamic sliding manifold (DSM) technique is

proposed to attenuate the accelerations transmitted to an isolated experiment mount either from a

vibrating base or directly generated by the experiment, as well as to stabilize the internal

dynamics of this nonminimum phase plant. An auxiliary DSM is employed to maintain the high-

order sliding mode on the primary sliding manifold in the presence of uncertain actuator

dynamics of second order. The primary DSM is designed for the closed-loop system in sliding

mode to be a filter with given characteristics with respect to the input external disturbances.

1. Introduction

As a research laboratory, the International Space Station (ISS) provides the unique near-

zero gravity environment of low-earth orbit for state-of-the-art lag science investigation [1].

However, due to a variety of vibro-acoustic disturbances on the ISS, the acceleration

environment is expected to significantly exceed the requirements of many acceleration sensitive

experiments. Thus, vibration isolation system is required to attenuate the anticipated disturbances

to an acceptable level. The basic objective of a vibration isolation system is to attenuate the

accelerations transmitted to an isolated experiment mount either from a vibrating base or from

directly applied disturbances generated by the experiment. Passive isolation techniques are often

adequate to provide sufficient attenuation of vibration disturbances in the high frequency regime,

but isolation of low and intermediate frequency vibrations requires active isolation.



The vibration isolation requirements for active isolation system design can be stated as

follows [1]

1) The isolation system must directly transmit the very low frequency quasi-

steady accelerations below 0.01Hz.

2) The amount of attenuation between 0.01Hz and 10Hz must increase one order

of magnitude for every decade of frequency.

3) Three orders of magnitude attenuation are required above 10Hz.

In order to provide a quiescent acceleration environment to an experiment, an active

isolation system must sense and cancel the accelerations applied to the experiment. Standard

approaches to microgravity vibration isolation typically employ high-frequency acceleration

feedback control to cancel the accelerations and low frequency position feedback control to

center the platform in the sway space while following the quasi-steady motion of the vehicle.

Classical control approaches based on PID control and loop shaping have been fruitfully applied

lag vibration isolation [1], while current work is also focusing on the development of more

advanced multivariable linear control law development [2].

Microgravity vibration isolation systems must not only meet the performance

requirements stated above, but they must also possess sufficient robustness to accommodate

system properties such as significant cross-coupling, uncertain and possibly nonlinear umbilicals,

varying mass and inertia properties, and uncertain flexible modes of the isolated payload. These

issues of robustness and performance lead to a challenging control system design problem.

A robust Sliding Mode Control (SMC) design approach will be employed in this work to

meet those requirements. For many control applications SMC has been proven [3] to be efficient

technique to provide high-fidelity performance in stabilization or output-tracking problems for

nonlinear systems with uncertainties in system parameters and external disturbances. The sliding

mode is the system motion on a judiciously selected surface (known as the sliding surface or the

sliding manifoM [3]) in the system state space. A sliding surface should be designed to provide

required system behavior. The system motion in sliding is governed by equations of sliding

surface and closed-loop internal dynamics of the system if the total relative degree [4] of the

system input/output dynamics is less than the order of the system. This motion is establishing as

a result of steady auto-oscillations of very high frequency (infinite frequency in ideal sliding

mode) induced in the closed-loop system that makes this motion to be robust to system



parameter variations and external disturbances. The ideal system motion in sliding doesn't

depend on control directly, a SMC provides for sliding surface to attract system trajectories and

maintain them on the surface thereafter. As for high frequency switching of control vector

components in auto-oscillation regime, those could be input voltages to the input of the actuator

implementing actual control input to the system, if it's, say, a mechanical one. As far as an

actuator is usually a low-pass filter, the actual control force will be a smooth continuous function

of time.

The problem to attenuate the accelerations transmitted to an isolated experiment mount

exhibits a non-minimum phase nature. As we'll see further, the relative position of the platform

in the sway space is included in the system internal dynamics, which is unstable. That's why

we'll use a Dynamic Sliding Manifold (DSM) technique [5] to address this non-minimum phase

output stabilization problem. A sliding surface will be designed such that the platform

acceleration dynamics behaves as a filter with specified characteristics with respect to input

disturbances, and closed-loop internal dynamics are stable, which means that the relative position

of the platform is bounded within specified limits. A high-order sliding mode on this surface will

be used to provide existence of the sliding mode considering the actuator as uncertain dynamics

of known order.

2. Problem formulation

A one-dimensional model of the system to be controlled presented in Fig.1

described by the following equation

/
I
d X

Fig. 1

= -k(x - d) - c(e - d)- u,

where Id- xI 0.01m, lu[g 4N, m = lOkg,

and c = 0.283.

The system state vector is selected to be

zl =x-d,

z 2 = s(x - d),

(Oh
Z3 -- S2X, (Oh

S+(O s

= 2tr. 250rad / s

can be

(1)

k =20 N
m

(2)



in the Laplace domain, where z 3 is the output from the accelerometer. The state space equations

of motion are shown as

_1 "- Z2'

_ :-As,-iz2 -±_,-_,
m m m

z3 c°hk c°hc cos- z I - --z 2 - cohZ3 -- --II.
m m m

(3)

To transform the system (3) to the so-called normal form [4], we apply the following

transformation

ixllEi00llzll
X 3 0 1 J L_J

(4)

The resulting system of equations represented in normal form is shown as

1
,i'l = x2 + rex3, ar = 3141.59

cob

'_2 =" X3 --_1_, P = 44.45

y = 1570.83
X3 -- --_! -- i_2 -- _'X3 -- bll,

b = 157.08
y=X 3

(5)

The objective of our control effort is to force the output to zero (y _ 0) and to maintain

_q(t_ <0.01 [m] for all time. This is a very challenging problem since the system (5) has unstable

zero dynamics [3] with two eigenvalues at origin:

el = -d.

This is commonly characterized as a non-minimum phase system.

3. SMC design

It is well known [3] that a conventional sliding manifold cannot be used to stabilize

y--_ 0 for a non-minimum phase system under a bounded control law. However, using a

dynamic sliding manifold (DSM) [5], we can achieve BIBO stability for the closed-loop system.

We use a DSM of the form



g

0"= x 3 + Cl J X3dr + cox _.

Assuming that the sliding mode exists in the DSM (6), we obtain, using

acceleration dynamics in sliding mode as

_3 + (q + c°)_3 + CoX3= Co3 .
(Oh

Also, the relative position dynamics (or closed-loop internal dynamics) is shown as

_l + (q + c° )_l + CoX1=-3- qd.
(Oh

Given that the acceleration x 3 and relative position

be achieved according to the following control law

U = Ueq + sign (o-), p >] Ueq - Ueq [, Ueq = --ff Xl + x3,

where Ueq is defined as the equivalent control [3].

(6)

(5) and (6), the

(7)

(8)

x I are measurable, the sliding mode (6) can

(9)

Interpretation of the @namic SMC as an active low-pass filter

The closed-loop acceleration dynamics (7) can be interpreted as a second order filter for

d. This is written in the Laplace domain as

C o
x3 = 3. (10)

s _ +(q +C°)s+co
(O h

Selecting c o = O. 1, c n = 0.6, we obtain amplitude characteristics for (10) presented in Fig.2.
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Fig.2 versus (o[rad/s]



Thus, in ideal sliding mode we've matched all the requirements for disturbance attenuation.

4. SMC design for the system with second order uncertain actuator dynamics

For the system shown in (5), a DSM (6) and a control law (9) have been designed to

provide the existence of sliding mode such that closed-loop dynamics of the system (5) achieves

the required performance (acceleration attenuation and bounded position deviation) assuming an

ideal actuator. In reality, the control force u is provided by an actuator system that can be

modeled by a transfer function of the form

A(O

,002- 2+ 8 2 <1, (11)u - s2 + 2g'c°0s + co02 v, = _,

or in differential equation format

01 = r/2,

//2 =-2_'C°or/2- c°o2rh +C°o2v, (12)

U =r/l ,

where v is the actual control input. Considering actuator (11) as uncertain second order system

[6,7], we should provide existence of the sliding mode on the surface cr = 0 using v as control

input. From (5),(6) we obtain

d" = -_1 + (Co - fl)x2 + "(X3 - bu, "( = Co + Cl _ 7,
O_ n

O: = -Ort_x I - (a +/_)X 2 - (_n" + fl - c0 + _)X3 - (co - fl)3 - bc" r/1 - b r/2 , (13)

then, combining (12) and (13), we have

6-"= _P(Xl, x2 , x3 , rll , r12, t) - bco 2v , (14)

where _(x_,x2,x3,r/l,r/2,t) = _l +_2 +_3 +gr/! +£r/2 +(a +_)3- (co - p)3",

K,:a_, ,8:/_-¢tZ,_"=?_'-(a+]_)- a--g-_' g:bc+bco 2 )T.:-b_'+2bg'coo,
O,)n '

0.,}n

¢_(.) is to be considered as uncertain but bounded term 'v't in some domain in _5.



Thus, only the third derivativeof sliding surface parameter cr

provide convergence cr to zero, we build an auxiliary DSM [8]

s 2 +bls+b o
J= or.

s 2 + als + a o

is proportional to control v. To

(15)

under control law (18).

(al -bO(ao -albl)'

Proof sketch: As soon as

arguments 3 oo > L > 0

q)(') + aoblJ + (bo - b12)6- - boblcr - r(L + p-')sgn(J). Using - L sgn(J), we build equation for

J, which is majoring J

a l-b 1>0, a 0-alb 1>0

q)(.) + aoblJ + (b 0 - bl2)dr - boblcr is bounded in some domain of its

such that -Lsgn(J) will be the function majoring

system (20) are bounded within domain ]J l<

System motion in sliding manifold J = 0 will provide cr --_ 0, 6" --->0, 6: _ 0 according to

o: + bid- + boo" = 0. (16)

The sliding mode where cr = 6- = o: = 0 is known as the third-order sliding mode or 3-sliding

mode [9]. Thus, if we provide the asymptotic third-order sliding mode (16) that, in turn, will

enforce given acceleration dynamics (10).

From equation (15) we obtain

Sr"+ (a I - bl)J + (a 0 - albl_I-aobl J = (b 0 - bl2)6- -bobler + 6'. (17)

If we select the control

v = _ sgn(J), (18)
o(o 0

L + ,o [q_(') + a0blJ +(b0 - b12)6- - b0bl°" I 1+8
= -- = =- > l, (181 < 1 ), (19)P 1-8"_>0'L max( },kt 1-8

/.t

then from (14),(17),(18) we obtain the following closed-loop system

Y +(al -bl)J +(a0 - albl)) = _(') + a0blJ +(b0 -bl2)6--boblO'-y(L + _) sgn(J). (20)

The following proposition is valid in this ease

Proposition Given conditions (I9) for uncertain terms, _(13) > 0 such that the solutions of the



or

J + (a I - bl)J + (a 0 - albl)J + L sgn(J) = O,

L._= .+(al-bl) +(ao + o
IJI

The system (21) will be asymptotically stable if a I -b I > 0, a 0 -albl > 0 _>0 and
IJI

(21)

(a I -bl)(a 0 -albl) > ---=-. This fact means that we can select a0,al,bl
IJI

such that ,7 will

converge to the domain [J I<
(al - bl)(a0 - albl)

only. Consequently, the same estimate we'll

have for 13]. Selecting sufficiently large (a I -bl)(a 0 -albl), we can make this domain to be

arbitrarily small. •

o

For

b, = 800, b o

controller of the form

= X 3 +ClfX3dr+CoXl, J-

Simulations

the time simulations, we select

= 4- l0 s, a t = 4440, a o = 9.896.106 , and

s 2 +bls+b o

S2 + als + a °

the parameters c o = 0.1, c I = 0.6,

,_=0.01, and use a sliding mode

or, v = -20x I - 10x3 + 0.01sgn(J),

for the system (5) with actuator (12), where according to (4) X3 is the acceleration of the

platform to be isolated, and x_ is its relative position in sway space. The results of the

simulations are given in Figs. 3-15. The external disturbance d=O.Olsin(2x'lOt)[m/s 2 ] is

presented in Fig. 3. The steady state value of the platform's acceleration is shown as

x 3 = 1.10-5[m/82]. The external disturbance has been attenuated by factor of 1000, and the

relative position has been held within prescribed limits (Fig.6). Fig.10 shows that the sliding

mode is provided in the DSM J.

We evaluate robustness in the second test by changing the set of system parameters by

20% as follows: k,,_ = k + 0.2k = 24[NIm], m,,o, = m - 0.1m = 9[kg], c,_, = c + 0.2c = 0.3396.

This leads to a new natural frequency of the platform given by to_., = 1.633[radls]. The second



testhas been carried out with the same external disturbance shown in Fig.3. From Fig. 12, we see

that the desired disturbance attenuation (aiter transient is over) is achieved. Because of parameter

variations, settling time of the closed-loop system increases from 20s to 30s, but in steady state

the system motion was insensitive to parameter.

6. Conclusions

The problem to attenuate the accelerations transmitted to an isolated experiment mount,

which exhibits the nonminimum phase nature, has been solved using Dynamic Sliding Manifold

technique. The platform closed-loop dynamics behaves as a filter with specified characteristics

with respect to input vibrations. High-order sliding mode is achieved to be robust to uncertain

second-order actuator dynamics via auxiliary DSM design.
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Test 2

For new set of system parameters
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